Welcome!
Willkommen!
Bienvenue!
Benvenuto!
Recepción!
Καλώς ήρθατε!
Добро пожаловать!
欢迎！
歓迎！
स्वागत!
환영!

Condensation Particle Counter Calibration

Tim Johnson
Product Specialist
Particle Instruments

Global Aerosol Education

© 2011, TSI Incorporated
Outline

• What is required in a Calibration
• Condensation Particle Counter – Basics
 – Instrument Schematics
• Specific issues for CPC calibration
• Description of Calibration Procedures
 – Basic Function checks
 – Instrument Flows
 – Optical Pulse alignment
 – Verification of temperatures
 – Concentration Checks
 – Special Tests
• Summary
Calibration

- **Calibration** \[\text{DEF}:\] The set of operations that establish, under specific conditions, the *relationship between values for quantities* indicated by a measuring instrument or measuring system, or values represented by a material measure or a reference material, and the corresponding values realized by standards.

- Good calibration procedures are needed so that results are:
 - Repeatable
 - Reproducable
 - Quantitative
 - Traceable

- Why the interest in CPC Calibration?
 - Main reason in regulations
 - Engine Emissions (Euro 5 and later, PMP, Reg. 83).
 - Environmental Monitoring (not yet regulated but becoming more standardized)

CPC Calibration Method

‘Primary Absolute Calibration’ Method
Developed by B. Liu and D. Pui in 1974

CPC Calibration Papers

Butanol CPC Key components

- **Three Basic Components**
 - **Saturator**
 - Heated to produce vapor from Butanol
 - **Condenser**
 - Cooled to cool particles
 - Vapor condenses onto particles and they grow
 - **Optics**
 - Count particles

![Diagram of CPC system with labels for Saturator, Condenser, and Optics. The diagram shows a flow from a pump at 40 °C through a saturator at 10-22 °C, a condenser at 39 °C, and an optics section at ~10 µm. The flow is indicated by arrows.](image)
Butanol CPC

Key components

Three Basic Components

- Optics
- Condenser
- Saturator
Butanol CPC Activation Theory

$$D_{\text{kelvin}} = \frac{4\delta_S M}{\rho_L RT \log S}$$

1) Saturate
2) Condense
3) Detect

$$S \equiv \frac{P_v}{P_{\text{saturation}}(T)}$$

D = Kelvin Diameter
$$\delta_S$$ = Surface Tension of Working Fluid
M = Molecular Weight of Working Fluid
$$\rho_L$$ = Density of Working Fluid
R = Gas Constant
T = Temperature
S = Supersaturation Ratio
$$P_v$$ = Vapor Pressure
$$P_{\text{saturation}}(T)$$ = Saturation Vapor Pressure
CPC Comparison - Alcohol and Water

Traditional (Alcohol) vs. WCPC

- Condenser, 10°C
- Saturator, 35°C
- Growth Tube, 60°C

Traditional

\[S = \frac{P_v}{P_{\text{sat}}} \]

WCPC

\[S = \frac{P_v}{P_{\text{sat}}} \]

Centerline Axial Profiles

- Saturation (%)
- Temperature -->
- Kelvin Diameter -->

Axial Distance/Tube Radius (z/R)

© 2007, TSI Incorporated

© 2011, TSI Incorporated
CPC Characteristics

- **Single Particle Counting device**
 - Can measure down to very low concentrations
 - CPCs are linear devices in single particle counting region
 - At high concentrations multiple particles can be in the single particle counting region simultaneously, resulting in lower detected concentration

- **Detection Efficiency varies with size**
 - Minimum Detection level often specified as D50 size
 - D50 = Diameter at which 50% of particles are detected (50% detection efficiency)
 - Other Dxx values are used to specify other Efficiency levels
 - Shape of efficiency curve depends on design of CPC
 - Flow path and flow rate, temperatures, working fluid, etc.
 - Detection Efficiency can depend on chemistry of particles being detected
 - Small effect with Butanol
 - Influences choice of calibration particles

- **Fast Response Time**
 - Testing done during product development
 - Not checked during Calibration
CPC Efficiency Curves

Counting Efficiency, %

Particle Size, nm

© 2007, TSI Incorporated

© 2011, TSI Incorporated
TSI’s current Condensation Particle Counters
Models 3772 & 3790

3772 Specs

D$_{50}$: 10 nm
Aerosol Flow: 1 Lpm
Max. Conc.: 10^4 pt/cm3
Response Time: 3 sec
Saturator Temp. 39°C
Condensor Temp. 22°C

3790 Specs

D$_{50}$: 23 nm
Aerosol Flow: 1 Lpm
Max. Conc.: 10^4 pt/cm3
Response Time: 3 sec
Saturator Temp. 38°C
Condensor Temp. 32°C

© 2007, TSI Incorporated
© 2011, TSI Incorporated
3775 ‘High Concentration’ CPC

3775 Specs

- $D_{50}: \quad 4 \text{ nm}$
- Max. Conc.: 10^7 pt/cm^3
 - Using Photometric mode
- 95% Response Time
 - High Flow: 4 sec
 - Low Flow: 5 sec
3776 Ultrafine Butanol CPC

3776 Specs

D$_{50}$: 2.5 nm
Max Conc: 3x105 pt/cm3
Aerosol Flow: 0.05 Lpm

95% Response Time
High Flow: <0.8 sec
Low Flow: 5 sec
CPC Specs Summary

<table>
<thead>
<tr>
<th>Specifications</th>
<th>3007</th>
<th>3781</th>
<th>3783</th>
<th>3772</th>
<th>3790</th>
<th>3787</th>
<th>3775</th>
<th>3776</th>
<th>3788</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{50} Min. Size (nm)</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>23</td>
<td>5</td>
<td>4</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Max. Concentration (particles/cm³)</td>
<td>100,000</td>
<td>400,000</td>
<td>1,000,000</td>
<td>10,000</td>
<td>10,000</td>
<td>250,000</td>
<td>50,000 <10^7*</td>
<td>300,000</td>
<td>400,000</td>
</tr>
<tr>
<td>Concentration Accuracy (%)</td>
<td>±20</td>
<td>±10</td>
<td>±10</td>
<td>±10</td>
<td>±10</td>
<td>±10</td>
<td>±10</td>
<td>±10</td>
<td>±10</td>
</tr>
<tr>
<td>Response - T95 (s)</td>
<td><9</td>
<td><2</td>
<td><3</td>
<td>~3</td>
<td>~3</td>
<td>~0.7</td>
<td>~4</td>
<td>~0.8</td>
<td>~0.25</td>
</tr>
<tr>
<td>Sample Flow (LPM)</td>
<td>0.1</td>
<td>0.12</td>
<td>0.12</td>
<td>1.0</td>
<td>1.0</td>
<td>0.6</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Total Inlet Flow</td>
<td>0.7</td>
<td>0.6</td>
<td>0.6</td>
<td>1.0</td>
<td>1.0</td>
<td>0.6/1.5</td>
<td>0.3/1.5</td>
<td>0.3/1.5</td>
<td>0.6/1.5</td>
</tr>
<tr>
<td>Flow Source</td>
<td>Internal</td>
<td>Internal</td>
<td>External</td>
<td>External</td>
<td>External</td>
<td>Internal</td>
<td>Internal</td>
<td>Internal</td>
<td>Internal</td>
</tr>
<tr>
<td>Working Fluid</td>
<td>Isopropyl</td>
<td>Water</td>
<td>Water</td>
<td>Butanol</td>
<td>Butanol</td>
<td>Water</td>
<td>Butanol</td>
<td>Butanol</td>
<td>Water</td>
</tr>
<tr>
<td>Display</td>
<td>Digital LCD</td>
<td>Digital LCD</td>
<td>Touch w/graph</td>
<td>Digital LCD</td>
<td>Digital LCD</td>
<td>Touch w/graph</td>
<td>LCD w/graph</td>
<td>LCD w/graph</td>
<td>Touch w/graph</td>
</tr>
<tr>
<td>Data Logging/Storage</td>
<td>On-board</td>
<td>On-board</td>
<td>Flash drive</td>
<td>N/A</td>
<td>N/A</td>
<td>Flash drive</td>
<td>Memory Card</td>
<td>Memory Card</td>
<td>Flash drive</td>
</tr>
<tr>
<td>SMPS Compatibility</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Photometric Mode
CPC Specs Summary

<table>
<thead>
<tr>
<th>Specifications</th>
<th>3007</th>
<th>3781</th>
<th>3783</th>
<th>3772</th>
<th>3790</th>
<th>3787</th>
<th>3775</th>
<th>3776</th>
<th>3788</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₅₀ Min. Size (nm)</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>23</td>
<td>5</td>
<td>4</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Max. Concentration</td>
<td>100,000</td>
<td>400,000</td>
<td>1,000,000</td>
<td>10,000</td>
<td>10,000</td>
<td>250,000</td>
<td>50,000</td>
<td><10⁷⁺</td>
<td>300,000</td>
</tr>
<tr>
<td>Concentration Accuracy (%)</td>
<td>±20</td>
<td>±10</td>
<td>±10</td>
<td>±10</td>
<td>±10</td>
<td>±10</td>
<td>±10</td>
<td>±10</td>
<td>±10</td>
</tr>
<tr>
<td>Response - T95 (s)</td>
<td><9</td>
<td><2</td>
<td><3</td>
<td>~3</td>
<td>~3</td>
<td>~0.7</td>
<td>~4</td>
<td>~0.8</td>
<td>~0.25</td>
</tr>
<tr>
<td>Sample Flow (LPM)</td>
<td>0.1</td>
<td>0.12</td>
<td>0.12</td>
<td>1.0</td>
<td>1.0</td>
<td>0.6</td>
<td>0.3</td>
<td>0.05</td>
<td>0.3</td>
</tr>
<tr>
<td>Total Inlet Flow</td>
<td>0.7</td>
<td>0.6</td>
<td>0.6</td>
<td>1.0</td>
<td>1.0</td>
<td>0.6/1.5</td>
<td>0.3/1.5</td>
<td>0.3/1.5</td>
<td>0.6/1.5</td>
</tr>
<tr>
<td>Flow Source</td>
<td>Internal</td>
<td>Internal</td>
<td>External</td>
<td>External</td>
<td>External</td>
<td>Internal</td>
<td>Internal</td>
<td>Internal</td>
<td>Internal</td>
</tr>
<tr>
<td>Working Fluid</td>
<td>Isopropyl</td>
<td>Water</td>
<td>Water</td>
<td>Butanol</td>
<td>Butanol</td>
<td>Water</td>
<td>Butanol</td>
<td>Butanol</td>
<td>Water</td>
</tr>
<tr>
<td>Display</td>
<td>Digital LCD</td>
<td>Digital LCD</td>
<td>Touch w/graph</td>
<td>Digital LCD</td>
<td>Digital LCD</td>
<td>Touch w/graph</td>
<td>LCD w/graph</td>
<td>LCD w/graph</td>
<td>Touch w/graph</td>
</tr>
<tr>
<td>Data Logging/ Storage</td>
<td>On-board</td>
<td>On-board</td>
<td>Flash drive</td>
<td>N/A</td>
<td>N/A</td>
<td>Flash drive</td>
<td>Memory Card</td>
<td>Memory Card</td>
<td>Flash drive</td>
</tr>
<tr>
<td>SMPS Compatibility</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Photometric Mode
Issues for CPC calibration

- Calibration Standard
 - Primary Calibration – Aerosol Electrometer (AE)
 - Secondary Calibration – Reference CPC
- Need Special Aerosols for calibration
 - Monodisperse Aerosol needed for Counting Efficiency measurements
 - Single charged particles needed for AE
 - High concentrations needed for concentration linearity tests
- Some tests only done if required for regulations
 - Counting Efficiency Tests
 - Required for PMP (Engine Emission) standard
 - D50 Efficiency = 50% ± 12% at 23 nm and D90 Efficiency > 90% at 41 nm
 - Other CPCs - Efficiency curve determined during product development
 - Variation between units is very small.
Traceability: Aerosol Electrometer (AE)

Primary Concentration Reference

Resistor (R)
- 1% precision, measured using NIST traceable standard

Particle charge \((n_p)\)
- Verified to be unity (1.0) by SMPS

Flow rate \((q_e)\)
- NIST traceable flow meter

\[
N = \frac{V}{e \cdot R \cdot n_p \cdot q_e}
\]

- \(e\) = elementary unit charge
 \(1.602 \times 10^{-19} \text{ C}\)
- \(n_p\) = average number of charges per particle
- \(q_e\) = volumetric aerosol flow rate
Reference Aerosol Electrometer versus Reference CPC

- **Primary Calibration** – Aerosol Electrometer (AE)
 - Calibration against a Reference Electrometer is used to establish traceability to SI units.
 - **Reading** must be corrected if particles carry multiple charges.
 - **Calibration result** for Efficiency curve must be corrected if particles have more than one mode.
 - Needs high enough concentration for good signal.

- **Secondary Calibration** - Condensation Particle Counter (CPC)
 - Reference CPC calibrated against a Reference Electrometer is a valid, traceable transfer standard.
 - **Calibration result** for Efficiency curve must be corrected if particles have more than one mode.
Electrostatic Classifier: Traceable Particle Size

In a cylindrical DMA, Z_p of selected particles is

$$Z_p = \frac{v}{E} = \frac{n_p eC}{3\pi \mu D_p}$$

Inversely proportional to D_p

$$Z_p = \frac{[q_t - 1/2(q_p + q_m)] \ln(r_2 / r_1)}{2\pi VL}$$

Flow rates (q_t, q_p, q_m)
- NIST traceable flow meters

Geometric parameters (r_1, r_2, L)
- NIST traceable bore gage, micrometer and caliper

Voltage on center electrode (V)
- Calibrated with NIST traceable kilovolt divider

Output is Single Electrical Mobility \approx Single Particle Charge

New ISO standard (ISO 15900-2009) describes Classifiers
CPC used in PMP Standard

- Europe has a particle number emission standards for certain vehicle types
- PMP Standard has special requirements for CPC
- CPC requirements
 - Butanol working fluid
 - Single Flow (no flow splits)
 - Counting Accuracy of ±10% over full concentration range
 - No photometric mode but Dead-time correction allowed
 - Requirements for Efficiency curve check and Concentration Linearity
- Calibration must be done with Aerosol Electrometer
 - Counting Efficiency specified for D50 and D90
 - Linearity checked at 5 equally spaced concentrations between zero and 10,000 particles/cc
 - Determine Slope and R^2 of CPC under test versus a Reference Detector (Electrometer or CPC)
 - Ratio must be between 0.9 and 1.1 at all concentrations
Atomized Calibration Aerosol

NaCl Particles

Width ($\sigma_g = 1.84$) Crystalline shape

Calibration Particles Percentage
- 50 nm – single charge 74.39%
- 72 nm – double charge 19.05%
- 91 nm – triple charge 6.56%

Problems for Calibration
- Multiply charged particles
 - Worse for smaller sizes
CAST Soot Calibration Aerosol

Oxidation air
Compressed air
N₂
C₃H₈

CAST Generator

Concentration Control

Electrostatic Classifier & Nano-DMA

Raw Emery CAST Particles
Example: 61nm (sₙ = 1.59)

Calibration Particles	Percentage
22 nm – single charge | 90.868%
32 nm – double charge | 8.663%
40 nm – triple charge | 0.47%

Classified Soot is Multimodal
Non-spherical (agglomerates) Multiply charged

> Corrections must be applied
Emery Oil Calibration Aerosol

Filtered air Supply

Electrospray Aerosol Generator

Concentration Control

Electrostatic Classifier & Nano-DMA

Emery Oil Particles for D50 Calibration

<table>
<thead>
<tr>
<th>Calibration Particles</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 nm – single charge</td>
<td>99.919%</td>
</tr>
<tr>
<td>32 nm – double charge</td>
<td>0.081%</td>
</tr>
<tr>
<td>40 nm – triple charge</td>
<td>0.000001%</td>
</tr>
</tbody>
</table>

Monodisperse ($\sigma_g = 1.04$)

Spherical Singly Charged

Ideal for Calibration

TRUST. SCIENCE. INNOVATION.
PMP Counting Efficiency Requirements

Original PMP requirement

A lot of sizes needed to be generated
Long test - Expensive

<table>
<thead>
<tr>
<th>% Particle Efficiency</th>
<th>Lower Size (nm)</th>
<th>Upper Size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D10</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>D25</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>D50</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>D90</td>
<td>33</td>
<td>41</td>
</tr>
</tbody>
</table>

Current PMP requirement

<table>
<thead>
<tr>
<th>% Particle Efficiency</th>
<th>Particle Size (nm)</th>
<th>Nominal Efficiency</th>
<th>Lower Efficiency</th>
<th>Upper Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>D50</td>
<td>23 ± 1</td>
<td>50% ± 12%</td>
<td>38%</td>
<td>62%</td>
</tr>
<tr>
<td>D90</td>
<td>41 ± 1</td>
<td>>90 %</td>
<td>90%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Electrospray Aerosols Classified

• Solution concentrations need to be adjusted for each particle size needed
 – Aerosols needed for Efficiency Curve calibration are 23 nm and 41 nm
 • Counting Efficiency at 23 nm is 50% ± 12%
 • Counting Efficiency at 41 nm is >90%
 – Aerosol needed for Concentration Linearity
 • Must have very high percentage of singularly charged particles
 • Need concentration ≥ 10,000 (to all instruments) to cover full concentration range
What is included in calibration?

• Description of Calibration Procedures
 – Basic Function checks
 – Instrument Flows
 – Optical Pulse alignment
 – Verification of temperatures
 – Concentration Checks
 • Zero count
 • Basic Linearity
 – Special Tests
 • Counting Efficiency Test
 – For PMP Standard Checks at D50 and D90 points
 • Concentration Linearity testing (for PMP – special requirements)
 • Photometric Calibration
What is included in calibration?
- Basic Function Checks
 - Circuit board Voltages
 - Analog inputs and outputs, pulsed output
 - Communications
 - Serial connection
 - USB connection
 - Ethernet
 - Flash Memory card
 - Liquid Level sensor setup
 - Water Removal System
What is included in calibration?

- Instrument Flows

• Concentration is linearly related to Flow
• Some CPCs have multiple flows
 – Selectable Inlet Flows
 – Capillary Flows (Ultrafine CPCs)
 • Requires Calibration
What is included in calibration?
- Optical Alignment

- Particles all grow to uniform size
- Pulses need to be uniform (within a range) in both height and width
What is included in calibration?

- Temperatures

- Saturator and Condenser Temperatures determine Counting Efficiency

- Optics need to be heated to prevent condensation on optics
Concentration Checks

• Reference Instrument
 – Reference CPC
 – Aerosol Electrometer - Primary Calibration Standard
 • Requires Known Charge Level on Particles
 • Not single Particle Counting – Requires hundreds or charges

• Linearity Checks over concentration range

• Zero Count Test – 12 hour test
 – Average value, Particle Burst Events

• Dead Time Correction verification
 – What is Dead-time?
Particle Concentration Calculation

Correcting for Coincidence - Dead Time

Concentration = \(\frac{\# \text{ Particles}}{(\text{Flow rate} \times \text{“Sample time”})} \)

“Sample Time” ≡ \(t_{\text{live}} = t_{\text{interval}} - (t_{\text{dead}} \times \tau) \)

\(\tau \) = Dead Time Correction Factor
Dead-Time Correction

\[DTC = \tau = \frac{T_m}{T_d} \]

Coincident Gaussian Pulses

<table>
<thead>
<tr>
<th>Signal</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_s)</td>
<td>(T_m)</td>
</tr>
<tr>
<td>(v_s)</td>
<td>(T_d)</td>
</tr>
</tbody>
</table>

\(T_d = \text{Discriminator Time} \)
\(T_m = \text{Minimum Detectable Time} \) (between particles)
\(\tau = \text{Dead-time Correction factor} \)
Dilution Bench

• Reference: Single flow, single particle counting CPC
• Adjusted diluter - Exact diluter ratio determined
• Can measure up to 10 million particles/cc
1000:1 Diluter

- Use to compare concentrations
 - Reference CPC is 3772 single particle counting CPC
 - Test 3775 and 3776

- 3775 has photometric mode
 - 10^7 maximum concentration
- 3776 has 300,000 maximum concentration
Checking Concentration Linearity

Adjust 1000:1 Diluter - Sample to determine “Mean Dilution Ratio” (~ 1000:1)

⇒

Adjust variable diluter to adjust concentrations

<table>
<thead>
<tr>
<th>Table Diluter Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>16000</td>
</tr>
<tr>
<td>40000</td>
</tr>
<tr>
<td>96000</td>
</tr>
<tr>
<td>160000</td>
</tr>
<tr>
<td>240000</td>
</tr>
</tbody>
</table>

![Graph showing concentration vs. reference counter](image)
Linearity Test

Example model 3776

<table>
<thead>
<tr>
<th>I.U.T Conc</th>
<th>3772 Conc</th>
<th>Ref Conc</th>
<th>%diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.695e+004</td>
<td>1.707e+001</td>
<td>1.690e+004</td>
<td>0.306</td>
</tr>
<tr>
<td>3.032e+004</td>
<td>3.036e+001</td>
<td>3.005e+004</td>
<td>0.872</td>
</tr>
<tr>
<td>3.848e+004</td>
<td>3.789e+001</td>
<td>3.751e+004</td>
<td>2.572</td>
</tr>
<tr>
<td>5.128e+004</td>
<td>5.040e+001</td>
<td>4.990e+004</td>
<td>2.752</td>
</tr>
<tr>
<td>1.032e+005</td>
<td>1.016e+002</td>
<td>1.006e+005</td>
<td>2.547</td>
</tr>
<tr>
<td>2.072e+005</td>
<td>2.089e+002</td>
<td>2.066e+005</td>
<td>0.221</td>
</tr>
<tr>
<td>2.912e+005</td>
<td>2.970e+002</td>
<td>2.940e+005</td>
<td>-0.954</td>
</tr>
<tr>
<td>1.674e+004</td>
<td>1.654e+001</td>
<td>1.636e+004</td>
<td>2.202</td>
</tr>
<tr>
<td>0.000e+000</td>
<td>0.000e+000</td>
<td>0.000e+000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Dilution Ratio: 0.9999

Slope: 1.0029
CPC Zero Count Test

Attach a large HEPA filter to inlet
Set Unit to HIGH FLOW RATE.
Perform “Zero Count Test”

Test Criteria

• Overall Concentration
• Burst Count (# over 20 in 10 minutes)
• Maximum Burst Concentration
Photometric Calibration

 Photometric Mode Calibration Table - CpcCal2.cxx

<table>
<thead>
<tr>
<th>Conc</th>
<th>Voltage</th>
<th>Reference Conc</th>
<th>Fitted Conc</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.521e+001</td>
<td>0.047</td>
<td>1.451e+004</td>
<td>0.000e+000</td>
<td>0.000</td>
</tr>
<tr>
<td>3.257e+001</td>
<td>0.075</td>
<td>3.128e+004</td>
<td>3.170e+004</td>
<td>1.332</td>
</tr>
<tr>
<td>4.271e+001</td>
<td>0.090</td>
<td>4.103e+004</td>
<td>4.224e+004</td>
<td>2.938</td>
</tr>
<tr>
<td>5.780e+001</td>
<td>0.106</td>
<td>5.553e+004</td>
<td>5.530e+004</td>
<td>-0.427</td>
</tr>
<tr>
<td>5.269e+001</td>
<td>0.116</td>
<td>5.023e+004</td>
<td>6.046e+004</td>
<td>0.394</td>
</tr>
<tr>
<td>3.490e+001</td>
<td>0.136</td>
<td>3.120e+004</td>
<td>5.705e+004</td>
<td>-4.546</td>
</tr>
<tr>
<td>1.312e+002</td>
<td>0.160</td>
<td>1.251e+005</td>
<td>1.200e+005</td>
<td>-4.811</td>
</tr>
<tr>
<td>2.170e+002</td>
<td>0.207</td>
<td>2.087e+005</td>
<td>2.104e+005</td>
<td>0.807</td>
</tr>
<tr>
<td>2.976e+002</td>
<td>0.240</td>
<td>2.884e+005</td>
<td>2.991e+005</td>
<td>4.411</td>
</tr>
<tr>
<td>4.219e+002</td>
<td>0.276</td>
<td>4.063e+005</td>
<td>4.244e+005</td>
<td>4.469</td>
</tr>
<tr>
<td>7.352e+002</td>
<td>0.335</td>
<td>7.105e+005</td>
<td>7.661e+005</td>
<td>-0.334</td>
</tr>
<tr>
<td>1.051e+003</td>
<td>0.376</td>
<td>1.017e+006</td>
<td>9.693e+005</td>
<td>-4.668</td>
</tr>
<tr>
<td>1.590e+003</td>
<td>0.424</td>
<td>1.543e+006</td>
<td>1.522e+006</td>
<td>-1.376</td>
</tr>
<tr>
<td>2.634e+003</td>
<td>0.510</td>
<td>2.624e+006</td>
<td>2.635e+006</td>
<td>0.423</td>
</tr>
<tr>
<td>4.144e+003</td>
<td>0.609</td>
<td>4.092e+006</td>
<td>4.136e+006</td>
<td>1.086</td>
</tr>
<tr>
<td>5.104e+003</td>
<td>0.725</td>
<td>5.105e+006</td>
<td>5.013e+006</td>
<td>-1.505</td>
</tr>
<tr>
<td>3.533e+003</td>
<td>0.862</td>
<td>5.452e+006</td>
<td>5.545e+006</td>
<td>0.749</td>
</tr>
<tr>
<td>1.035e+004</td>
<td>1.014</td>
<td>1.005e+007</td>
<td>1.063e+007</td>
<td>-0.190</td>
</tr>
<tr>
<td>0.000e+000</td>
<td>0.000</td>
<td>0.000e+000</td>
<td>0.000e+000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000e+000</td>
<td>0.000</td>
<td>0.000e+000</td>
<td>0.000e+000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000e+000</td>
<td>0.080</td>
<td>0.000e+000</td>
<td>0.000e+000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000e+000</td>
<td>0.000</td>
<td>0.000e+000</td>
<td>0.000e+000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

© 2011, TSI Incorporated
Example for a Fully SI-Traceable CPC Calibration Setup

AIST Calibration System

Presented by Hiromu Sakurai @ ISO/TC 24/SC 4/WG 12 meeting in U.K. in September 2008
CPC Calibration - Summary

• Basic Calibration is important for all applications
 – Regulations add new requirements including traceability
• Different CPC designs require different tests
• Reference Standards
 – Primary or Secondary Calibration Standards can be used
 – They both have advantages and disadvantages
• Challenge Aerosols affect calibration results
 – Ideal particles are single-mode, monodisperse, and spherical
 – High concentrations and single charge per particle are sometimes needed
• All CPCs calibrations require checks or adjustment of: Flow, Optical alignment, Temperature, Concentration and Zero
• Addition Requirements can include: Efficiency curves (or portions of the curve), specific concentration linearity requirements
• Working on a CPC calibration standard is underway
 – ISO/TC 24/SC 4/WG 12
Webinars

February 10th
Particle Surface Area Concentrations and Number Size Distributions in View of Exposure Assessment
by Dr. Christof Asbach (IUTA)

February 24th
On-line Nanoparticle Characterization Studies of Fe-Ni Catalysts for Carbon Nanotube Growth
by Dr. Mohan Sankaran (Case Western Reserve)

March 10th
Fluorescent Biological Aerosol Particle Concentrations and Size Measured with UV-APS
by Dr. Alex Huffman (Max Planck Institute)

Optical Particle Sizer Model 3330

- Size resolution <5% at 0.5μm
- User adjustable size channels
- Size range: 0.3 – 10μm in up to 16 channels
- Wide concentration range from 0 to 3000 particles/cm³
- Fully compliant with ISO 21501-01/04

New WCPC's Models 3787 & 3788

- 2.5nm detection
- Single particle counting to 4x10⁵ particles/cm³
- <100 ms rise-time response w/ 42 ms time constant (fastest CPC available)
- Convenient, eco-friendly water as working fluid
Thank You For Your Attention

Any Questions?

Tim Johnson (tim.johnson@tsi.com)