

TEM & SEM Gallery

Particles made with the VSP-G1 & Deposition Accessories

Deposition methods

- Deposition possible when for example combined with cell culture exposure systems
- For calibration

Gallery Contents

- Diffusion
- 2 Filtration
- 3 Impaction

- 4 Powders
- 5 Size-Selection
- **6** Printed Materials

Diffusion

UNAGGLOMERATED PARTICLES

By VSP-G1 plus VSP-A1 diffusion Accessory

Gold nanoparticles

Comparison of SEM and TEM data

Example image of SEM and TEM images of the same type of samples. Au on silicon (a) or on carbon TEM grid (b).

Thirty minute deposition gives a 20% surface coverage. Both small (atomic clusters) and large (15 nm) particles are present. The smallest clusters can only be observed with TEM (right).

Coverage can be varied by changing the deposition time. A deposition time of 1-2 minutes gives enough material on the sample for TEM analysis.

Electrode: Gold

Gas: Argon

Voltage: 1.3 kV

Current: 8.1 mA

Flowrate: 10 SLM

t_{depo}: 30 minutes

Gold nanoparticles

Comparison of SEM and TEM data

$Data\ set$	Mode in nm
TEM	2.4
SEM	2.9
DMA	3.8

To analyse the data (a) first a binary image is made. The histogram of particle sizes can be constructed from the binary image.

Particles can be characterized in-line (DMA). The mode is overestimated compared to TEM with 1.4 nm. (left)

In-situ TEM analysis

ACTIVITY

Deposition of Ni on Protochip

TEM images of Ni NPs deposited by diffusion. Analysis with (in-situ) TEM at Oak Ridge National Laboratory. Paper on STEM-EELS analysis and lattice fringes will come out Q2 2019.

Electrode: Ni

Gas: Argon

Voltage: 1.3 kV

Current: 8.1 mA

Flowrate: 10 SLM

t_{depo}: 5 minutes

High-res TEM of Au

Analysis of gold Lattice

High-res TEM images in collaboration with TU Vienna (Rupprechter group)

Gold particles are crystalline and bimodal twins appear, even when producing at atmospheric conditions.

Electrode: Au

Gas: Argon

Voltage: 1.3 kV

Current: 8.1 mA

Flowrate: 10 SLM

t_{depo}: 5 minutes

Au-Cu alloy NPs

Using Au and Cu electrode

Substrate; DENS climate chip

Electrode: Au & Cu

Gas: Argon

Voltage: 1.3 kV

Current: 8.1 mA

Flowrate: 10 SLM

t_{depo}: 1-4hrs

Cu Kα1 Au Lα1

50nm

Successful gas-phase synthesis of Au-Cu nanoparticles using 2 different electrodes. The high gas flow meant the materials are well mixed in the gas phase, which produces alloyed nanoparticles from pure metal electrodes.

Au-Cu alloy NPs

Using Au and Cu electrode

Substrate; DENS climate chip

Electrode: Au & Cu

Gas: Argon

Voltage: 1.3 kV

Current: 8.1 mA

Flowrate: 10 SLM

t_{depo}: 1-4hrs

Successful gas-phase synthesis of Au-Cu nanoparticles using 2 different electrodes. The high gas flow meant the materials are well mixed in the gas phase, which produces alloyed nanoparticles from pure metal electrodes. After in-situ heating segregation into an Au and Cu phase can be observed.

00

Co nanoclusters

Research by Zhejiang University (China)

Synthesis of Cobalt Clusters using the VSP-G1 and diffusion accessory. The particles are directly deposited on a DENS wildfire chip.

Electrode: Co

Substrate: TEM Chip

Atmosphere: Argon

Voltage: 1.3kV

Current: 10mA

Flow: 8L/min

Time: 1h

Throughflow

Supplier: Zhejiang University

Co nanoclusters

Research by Zhejiang University (China)

After in-situ heating, the clusters have formed spherical particles.

Electrodes: Co

Substrate: TEM Chip

Atmosphere: Argon

Voltage: 1.3kV

Current: 10mA

Flow: 8L/min

Time: 1h

Throughflow

Supplier: Zhejiang University

Fe nanoparticles

Research by Zhejiang University (China)

Particles are deposited directly on a TEM grid. Both spherical and hexagonal particles are found.

Electrodes: Co

Substrate: TEM Chip

Atmosphere:Argon

Voltage: 1.3kV

Current: 10mA

Flow: 8L/min

Time: 1h

Throughflow

Cu nanoparticles

Research by Zhejiang University (China)

Electrodes: Cu

Substrate: TEM Grid

Atmosphere: Argon/Nitrogen

Voltage: 1.0kV

Current: 6mA

Flow: 10L/min

Time: 30min

Throughflow

Supplier: Zhejiang University

Pt nanoparticles

Research by Beijing Tech University (China)

Electrodes: Pt

Substrate: TEM Grid

Atmosphere: Argon

Voltage: 1kV

Current: 6mA

Flow: 10L/min

Time: 30min

Crossflow

Supplier: Beijing Tech University

Pd nanoparticles

Research by Zhejiang University (China)

Electrodes: Pd

Substrate: TEM Grid

Atmosphere: Argon

Throughflow

Supplier Zhejiang

University

Re nanoparticles

Research by Zhejiang University (China)

After heating

Substrate: TEM Grid

Atmosphere: Argon

Voltage: 1.36kV

Current: 9mA

Flow: 5L/min

Time: 1h

Crossflow

Supplier: Zhejiang University

Alloyed nanoparticles

Cu-Au & Cu-Ag

Substrate: TEM Grid

Electrodes: Cu-Au

Carrier gas: Nitrogen

Flowrate: 5L/min

Voltage: 1.36kV

Time: 1 hour

Current: 9mA

Crossflow

Zhejiang University

Substrate: TEM Grid

Cu-Ag NPs

Carrier gas: Argon

Flowrate: 10L/min

Voltage: 1.36kV

Time: 1 hour

Current: 9mA

Crossflow

Dongnan University

Filtration

DEPOSITION ON POROUS MATERIAL

By VSP-G1 plus VSP-A2 filtration Accessory

Catalyst fabrication

On Carbon Cloth substrate

Using the filtration accessory, particles can be deposited on porous substrates.

Examples of substrates are: Membrane filters, fiber filters and carbon cloth.

On the right a SEM image of gold deposited on porous carbon using this method. The carbon acts as a support and the gold nanoparticles as the catalyst. This sample preparation can be used in electrocatalysis studies.

Electrode : Gold Gas: Argon Voltage : 1.3 kV Current : 8.1 mA Flowrate : 3 SLM

t_{depo}: 30 minutes

Catalyst fabrication

On Carbon Cloth substrate

Using the filtration accessory, particles can be deposited on porous substrates.

Ni nanoparticles can be deposited in the same way. After deposition for a short while, the particles build up a filter cake.

Left, down: Deposition of single nanoparticles on the fiber. All images taken with SEM.

Electrode : Gold Gas: Argon Voltage : 1.3 kV Current : 8.1 mA Flowrate : 3 SLM

t_{depo}: 30 minutes

Catalyst fabrication

On electrospinned wires (right)

Using the filtration accessory, particles can be deposited on porous substrates.

Left (SEM): Particles are deposited on the electrospun wires. They grow porous structures.

Right (TEM): Aluminum oxide nanoparticles are observed (grey) as well as gold nanoparticles (black) on the right image. The fiber is in the top left of the image.

Electrode: Au-Al Gas: Argon 1.3 kV Voltage: Current: 8.1 mA

t_{depo}:

Powders

DEPOSITION ON POWDERS

By VSP-G1 plus Powder Coater Accessory

(in development)

Beta G1 accessory: Powder coater

Gas-Phase deposition on powders

Specifications

Minimum powder size: 0.1 µm

Maximum powder size: 400 µm

Target loading: 0.1-10wt%

Coating speed: Maximum 100

mg/hr of powder

Demonstrations possible from Q1 2020

Right: Au on C

Left: Au NP on TiO2

Impaction

POROUS LAYERS

By VSP-G1 plus VSP-A3 Impaction Accessory

Impaction

Nanoporous structures

When multiple layers of particles are deposited we see the growth of a nanoporous structure.

- Noble Metal (Au) and metal oxides (e.g. Cu_xO)
- Room-temperature / 0.1 mbar operating pressure.
- · Stable porous structure at ambient conditions
- Sample preparation time: 5 minutes

Impaction

Porous layers of nanoparticles

Deposition of porous layers of Cu_xO (upper) and Au (lower) fabricated with the G1 plus impaction accessory.

- Applications include (but not limited to)
 - Gas sensor fabrication
 - Materials research
 - Printing of Catalyst support

Analysis with SEM. It is possible to alter the deposition parameters such as spot size (0.1um - 5mm), porosity, layer thickness (50nm - several microns)

Electrode : Cu/Au Current : 4 mA

Carrier Gas: Argon Flowrate: 1 SLM

 $\mbox{Voltage}: \ \ \mbox{1 kV} \qquad \qquad t_{\mbox{\tiny depo}}: \ \ \mbox{1 minute}$

Printing

When multiple layers of particles are deposited, we see the growth of a nanoporous structure.

- Metal (Au) and metal oxides (Cu_xO)
- Room-temperature / 0.1 mbar operating pressure.
- Stable porous structure at ambient conditions
- Spatial control (0.1 mm resolution)
- Beta program printer in 2020

Size Selection

UNAGGLOMERATED SIZE SELECTED PARTICLES
By VSP-G1 plus Size Selection module

(available from 2019)

Size selection

Deposit monodisperse particles for TEM analysis

With our new size selection module, particles can be selected in-line and deposited on e.g. (in-situ) TEM substrates and electrodes.

Monodisperse gold particles of D= 3nm were deposited successfully.

Electrode: Au

Carrier Gas: Argon

Voltage: 1 kV

Current: 4 mA

Flowrate: 10 SLM

t_{depo}: 5 minutes

Comparison

Non-size selected Au (left), Size-selected Au (right)

Left: Non-size selected Au, optimized for 3nm, generated with VSP-G1 and deposited by diffusion accessory

Right: Size-selected 3nm Au generated with the VSP-G1 and deposited with the Size Selector (S1)

Deposition Examples

Screening of Pt catalyst for Fuel Cell research

With our new size selection module, particles can be selected in-line and deposited on e.g. (in-situ) TEM substrates and electrodes.

Monodisperse Platinum particles of D= 3nm were deposited successfully.

All Pt particles are crystalline.

Electrode : Pt

Carrier Gas: Argon

Voltage: 1 kV

Current: 4 mA

Flowrate: 10 SLM

• t_{depo}: 45 minutes

vsparticle

**Dulec 東京ダイレック株式会社

Deposition Examples

Screening of Pt catalyst for Fuel Cell research

With our new size selection module, particles can be selected in-line and deposited on e.g. (in-situ) TEM substrates and electrodes.

Monodisperse Platinum particles of D= 4nm were deposited successfully.

All Pt particles are crystalline.

Electrode: Pt

Carrier Gas: Argon

Voltage: 1 kV

Current: 4 mA

Flowrate: 10 SLM

t_{depo}: 45 minutes

Size selection

Deposit monodisperse particles for TEM analysis

With our new size selection module, particles can be selected in-line and deposited on e.g. (in-situ) TEM substrates and electrodes.

Monodisperse cobalt particles of D= 5nm were deposited successfully.

Electrode: Co

Carrier Gas: Argon

Voltage: 1 kV

Current:

4 mA

Fl------- 40 51 N

Flowrate: 10 SLM

t_{depo}: 30 minutes

お問合せ先

Email: info@tokyo-dylec.co.jp

Tel: 03-5367-0891 (営業部)

^①Dylec 東京ダイレック株式会社 TOKYO DYLEC CORP.

vsparticle